3.2589 \(\int \frac{(2+3 x)^4 (3+5 x)^{3/2}}{(1-2 x)^{5/2}} \, dx\)

Optimal. Leaf size=164 \[ \frac{(5 x+3)^{3/2} (3 x+2)^4}{3 (1-2 x)^{3/2}}-\frac{123 (5 x+3)^{3/2} (3 x+2)^3}{22 \sqrt{1-2 x}}-\frac{3315}{352} \sqrt{1-2 x} (5 x+3)^{3/2} (3 x+2)^2-\frac{3 \sqrt{1-2 x} (5 x+3)^{3/2} (10798680 x+22868329)}{281600}-\frac{1626211523 \sqrt{1-2 x} \sqrt{5 x+3}}{1126400}+\frac{1626211523 \sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )}{102400 \sqrt{10}} \]

[Out]

(-1626211523*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/1126400 - (3315*Sqrt[1 - 2*x]*(2 + 3*x)^2*(3 + 5*x)^(3/2))/352 - (12
3*(2 + 3*x)^3*(3 + 5*x)^(3/2))/(22*Sqrt[1 - 2*x]) + ((2 + 3*x)^4*(3 + 5*x)^(3/2))/(3*(1 - 2*x)^(3/2)) - (3*Sqr
t[1 - 2*x]*(3 + 5*x)^(3/2)*(22868329 + 10798680*x))/281600 + (1626211523*ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]])/(10
2400*Sqrt[10])

________________________________________________________________________________________

Rubi [A]  time = 0.0502907, antiderivative size = 164, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.269, Rules used = {97, 150, 153, 147, 50, 54, 216} \[ \frac{(5 x+3)^{3/2} (3 x+2)^4}{3 (1-2 x)^{3/2}}-\frac{123 (5 x+3)^{3/2} (3 x+2)^3}{22 \sqrt{1-2 x}}-\frac{3315}{352} \sqrt{1-2 x} (5 x+3)^{3/2} (3 x+2)^2-\frac{3 \sqrt{1-2 x} (5 x+3)^{3/2} (10798680 x+22868329)}{281600}-\frac{1626211523 \sqrt{1-2 x} \sqrt{5 x+3}}{1126400}+\frac{1626211523 \sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )}{102400 \sqrt{10}} \]

Antiderivative was successfully verified.

[In]

Int[((2 + 3*x)^4*(3 + 5*x)^(3/2))/(1 - 2*x)^(5/2),x]

[Out]

(-1626211523*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/1126400 - (3315*Sqrt[1 - 2*x]*(2 + 3*x)^2*(3 + 5*x)^(3/2))/352 - (12
3*(2 + 3*x)^3*(3 + 5*x)^(3/2))/(22*Sqrt[1 - 2*x]) + ((2 + 3*x)^4*(3 + 5*x)^(3/2))/(3*(1 - 2*x)^(3/2)) - (3*Sqr
t[1 - 2*x]*(3 + 5*x)^(3/2)*(22868329 + 10798680*x))/281600 + (1626211523*ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]])/(10
2400*Sqrt[10])

Rule 97

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p)/(b*(m + 1)), x] - Dist[1/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n
- 1)*(e + f*x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[m
, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])

Rule 150

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] - Dist[1
/(b*(b*e - a*f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b*c*(f*g - e*h)*(m + 1) + (
b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; Free
Q[{a, b, c, d, e, f, g, h, p}, x] && LtQ[m, -1] && GtQ[n, 0] && IntegersQ[2*m, 2*n, 2*p]

Rule 153

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(h*(a + b*x)^m*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 2)), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegerQ[m]

Rule 147

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))*((g_.) + (h_.)*(x_)), x_Symbol]
:> -Simp[((a*d*f*h*(n + 2) + b*c*f*h*(m + 2) - b*d*(f*g + e*h)*(m + n + 3) - b*d*f*h*(m + n + 2)*x)*(a + b*x)^
(m + 1)*(c + d*x)^(n + 1))/(b^2*d^2*(m + n + 2)*(m + n + 3)), x] + Dist[(a^2*d^2*f*h*(n + 1)*(n + 2) + a*b*d*(
n + 1)*(2*c*f*h*(m + 1) - d*(f*g + e*h)*(m + n + 3)) + b^2*(c^2*f*h*(m + 1)*(m + 2) - c*d*(f*g + e*h)*(m + 1)*
(m + n + 3) + d^2*e*g*(m + n + 2)*(m + n + 3)))/(b^2*d^2*(m + n + 2)*(m + n + 3)), Int[(a + b*x)^m*(c + d*x)^n
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && NeQ[m + n + 2, 0] && NeQ[m + n + 3, 0]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 54

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[2/Sqrt[b], Subst[Int[1/Sqrt[b*c -
 a*d + d*x^2], x], x, Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d}, x] && GtQ[b*c - a*d, 0] && GtQ[b, 0]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{(2+3 x)^4 (3+5 x)^{3/2}}{(1-2 x)^{5/2}} \, dx &=\frac{(2+3 x)^4 (3+5 x)^{3/2}}{3 (1-2 x)^{3/2}}-\frac{1}{3} \int \frac{(2+3 x)^3 \sqrt{3+5 x} \left (51+\frac{165 x}{2}\right )}{(1-2 x)^{3/2}} \, dx\\ &=-\frac{123 (2+3 x)^3 (3+5 x)^{3/2}}{22 \sqrt{1-2 x}}+\frac{(2+3 x)^4 (3+5 x)^{3/2}}{3 (1-2 x)^{3/2}}-\frac{1}{33} \int \frac{\left (-7734-\frac{49725 x}{4}\right ) (2+3 x)^2 \sqrt{3+5 x}}{\sqrt{1-2 x}} \, dx\\ &=-\frac{3315}{352} \sqrt{1-2 x} (2+3 x)^2 (3+5 x)^{3/2}-\frac{123 (2+3 x)^3 (3+5 x)^{3/2}}{22 \sqrt{1-2 x}}+\frac{(2+3 x)^4 (3+5 x)^{3/2}}{3 (1-2 x)^{3/2}}+\frac{\int \frac{(2+3 x) \sqrt{3+5 x} \left (\frac{3817455}{4}+\frac{12148515 x}{8}\right )}{\sqrt{1-2 x}} \, dx}{1320}\\ &=-\frac{3315}{352} \sqrt{1-2 x} (2+3 x)^2 (3+5 x)^{3/2}-\frac{123 (2+3 x)^3 (3+5 x)^{3/2}}{22 \sqrt{1-2 x}}+\frac{(2+3 x)^4 (3+5 x)^{3/2}}{3 (1-2 x)^{3/2}}-\frac{3 \sqrt{1-2 x} (3+5 x)^{3/2} (22868329+10798680 x)}{281600}+\frac{1626211523 \int \frac{\sqrt{3+5 x}}{\sqrt{1-2 x}} \, dx}{563200}\\ &=-\frac{1626211523 \sqrt{1-2 x} \sqrt{3+5 x}}{1126400}-\frac{3315}{352} \sqrt{1-2 x} (2+3 x)^2 (3+5 x)^{3/2}-\frac{123 (2+3 x)^3 (3+5 x)^{3/2}}{22 \sqrt{1-2 x}}+\frac{(2+3 x)^4 (3+5 x)^{3/2}}{3 (1-2 x)^{3/2}}-\frac{3 \sqrt{1-2 x} (3+5 x)^{3/2} (22868329+10798680 x)}{281600}+\frac{1626211523 \int \frac{1}{\sqrt{1-2 x} \sqrt{3+5 x}} \, dx}{204800}\\ &=-\frac{1626211523 \sqrt{1-2 x} \sqrt{3+5 x}}{1126400}-\frac{3315}{352} \sqrt{1-2 x} (2+3 x)^2 (3+5 x)^{3/2}-\frac{123 (2+3 x)^3 (3+5 x)^{3/2}}{22 \sqrt{1-2 x}}+\frac{(2+3 x)^4 (3+5 x)^{3/2}}{3 (1-2 x)^{3/2}}-\frac{3 \sqrt{1-2 x} (3+5 x)^{3/2} (22868329+10798680 x)}{281600}+\frac{1626211523 \operatorname{Subst}\left (\int \frac{1}{\sqrt{11-2 x^2}} \, dx,x,\sqrt{3+5 x}\right )}{102400 \sqrt{5}}\\ &=-\frac{1626211523 \sqrt{1-2 x} \sqrt{3+5 x}}{1126400}-\frac{3315}{352} \sqrt{1-2 x} (2+3 x)^2 (3+5 x)^{3/2}-\frac{123 (2+3 x)^3 (3+5 x)^{3/2}}{22 \sqrt{1-2 x}}+\frac{(2+3 x)^4 (3+5 x)^{3/2}}{3 (1-2 x)^{3/2}}-\frac{3 \sqrt{1-2 x} (3+5 x)^{3/2} (22868329+10798680 x)}{281600}+\frac{1626211523 \sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{3+5 x}\right )}{102400 \sqrt{10}}\\ \end{align*}

Mathematica [A]  time = 0.0800697, size = 84, normalized size = 0.51 \[ \frac{4878634569 \sqrt{10-20 x} (2 x-1) \sin ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )-10 \sqrt{5 x+3} \left (15552000 x^5+83548800 x^4+236669040 x^3+633940524 x^2-2034703904 x+739060191\right )}{3072000 (1-2 x)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((2 + 3*x)^4*(3 + 5*x)^(3/2))/(1 - 2*x)^(5/2),x]

[Out]

(-10*Sqrt[3 + 5*x]*(739060191 - 2034703904*x + 633940524*x^2 + 236669040*x^3 + 83548800*x^4 + 15552000*x^5) +
4878634569*Sqrt[10 - 20*x]*(-1 + 2*x)*ArcSin[Sqrt[5/11]*Sqrt[1 - 2*x]])/(3072000*(1 - 2*x)^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.013, size = 171, normalized size = 1. \begin{align*}{\frac{1}{6144000\, \left ( 2\,x-1 \right ) ^{2}} \left ( -311040000\,{x}^{5}\sqrt{-10\,{x}^{2}-x+3}-1670976000\,{x}^{4}\sqrt{-10\,{x}^{2}-x+3}+19514538276\,\sqrt{10}\arcsin \left ({\frac{20\,x}{11}}+1/11 \right ){x}^{2}-4733380800\,{x}^{3}\sqrt{-10\,{x}^{2}-x+3}-19514538276\,\sqrt{10}\arcsin \left ({\frac{20\,x}{11}}+1/11 \right ) x-12678810480\,{x}^{2}\sqrt{-10\,{x}^{2}-x+3}+4878634569\,\sqrt{10}\arcsin \left ({\frac{20\,x}{11}}+1/11 \right ) +40694078080\,x\sqrt{-10\,{x}^{2}-x+3}-14781203820\,\sqrt{-10\,{x}^{2}-x+3} \right ) \sqrt{1-2\,x}\sqrt{3+5\,x}{\frac{1}{\sqrt{-10\,{x}^{2}-x+3}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2+3*x)^4*(3+5*x)^(3/2)/(1-2*x)^(5/2),x)

[Out]

1/6144000*(-311040000*x^5*(-10*x^2-x+3)^(1/2)-1670976000*x^4*(-10*x^2-x+3)^(1/2)+19514538276*10^(1/2)*arcsin(2
0/11*x+1/11)*x^2-4733380800*x^3*(-10*x^2-x+3)^(1/2)-19514538276*10^(1/2)*arcsin(20/11*x+1/11)*x-12678810480*x^
2*(-10*x^2-x+3)^(1/2)+4878634569*10^(1/2)*arcsin(20/11*x+1/11)+40694078080*x*(-10*x^2-x+3)^(1/2)-14781203820*(
-10*x^2-x+3)^(1/2))*(1-2*x)^(1/2)*(3+5*x)^(1/2)/(2*x-1)^2/(-10*x^2-x+3)^(1/2)

________________________________________________________________________________________

Maxima [C]  time = 3.48355, size = 325, normalized size = 1.98 \begin{align*} \frac{81}{64} \,{\left (-10 \, x^{2} - x + 3\right )}^{\frac{3}{2}} x + \frac{1666460963}{2048000} \, \sqrt{5} \sqrt{2} \arcsin \left (\frac{20}{11} \, x + \frac{1}{11}\right ) + \frac{251559}{12800} i \, \sqrt{5} \sqrt{2} \arcsin \left (\frac{20}{11} \, x - \frac{21}{11}\right ) + \frac{10161}{1280} \,{\left (-10 \, x^{2} - x + 3\right )}^{\frac{3}{2}} - \frac{2079}{32} \, \sqrt{10 \, x^{2} - 21 \, x + 8} x + \frac{29403}{5120} \, \sqrt{-10 \, x^{2} - x + 3} x + \frac{43659}{640} \, \sqrt{10 \, x^{2} - 21 \, x + 8} - \frac{34897797}{102400} \, \sqrt{-10 \, x^{2} - x + 3} - \frac{2401 \,{\left (-10 \, x^{2} - x + 3\right )}^{\frac{3}{2}}}{96 \,{\left (8 \, x^{3} - 12 \, x^{2} + 6 \, x - 1\right )}} + \frac{1029 \,{\left (-10 \, x^{2} - x + 3\right )}^{\frac{3}{2}}}{8 \,{\left (4 \, x^{2} - 4 \, x + 1\right )}} + \frac{1323 \,{\left (-10 \, x^{2} - x + 3\right )}^{\frac{3}{2}}}{32 \,{\left (2 \, x - 1\right )}} + \frac{26411 \, \sqrt{-10 \, x^{2} - x + 3}}{192 \,{\left (4 \, x^{2} - 4 \, x + 1\right )}} + \frac{491519 \, \sqrt{-10 \, x^{2} - x + 3}}{192 \,{\left (2 \, x - 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^4*(3+5*x)^(3/2)/(1-2*x)^(5/2),x, algorithm="maxima")

[Out]

81/64*(-10*x^2 - x + 3)^(3/2)*x + 1666460963/2048000*sqrt(5)*sqrt(2)*arcsin(20/11*x + 1/11) + 251559/12800*I*s
qrt(5)*sqrt(2)*arcsin(20/11*x - 21/11) + 10161/1280*(-10*x^2 - x + 3)^(3/2) - 2079/32*sqrt(10*x^2 - 21*x + 8)*
x + 29403/5120*sqrt(-10*x^2 - x + 3)*x + 43659/640*sqrt(10*x^2 - 21*x + 8) - 34897797/102400*sqrt(-10*x^2 - x
+ 3) - 2401/96*(-10*x^2 - x + 3)^(3/2)/(8*x^3 - 12*x^2 + 6*x - 1) + 1029/8*(-10*x^2 - x + 3)^(3/2)/(4*x^2 - 4*
x + 1) + 1323/32*(-10*x^2 - x + 3)^(3/2)/(2*x - 1) + 26411/192*sqrt(-10*x^2 - x + 3)/(4*x^2 - 4*x + 1) + 49151
9/192*sqrt(-10*x^2 - x + 3)/(2*x - 1)

________________________________________________________________________________________

Fricas [A]  time = 1.53369, size = 367, normalized size = 2.24 \begin{align*} -\frac{4878634569 \, \sqrt{10}{\left (4 \, x^{2} - 4 \, x + 1\right )} \arctan \left (\frac{\sqrt{10}{\left (20 \, x + 1\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{20 \,{\left (10 \, x^{2} + x - 3\right )}}\right ) + 20 \,{\left (15552000 \, x^{5} + 83548800 \, x^{4} + 236669040 \, x^{3} + 633940524 \, x^{2} - 2034703904 \, x + 739060191\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{6144000 \,{\left (4 \, x^{2} - 4 \, x + 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^4*(3+5*x)^(3/2)/(1-2*x)^(5/2),x, algorithm="fricas")

[Out]

-1/6144000*(4878634569*sqrt(10)*(4*x^2 - 4*x + 1)*arctan(1/20*sqrt(10)*(20*x + 1)*sqrt(5*x + 3)*sqrt(-2*x + 1)
/(10*x^2 + x - 3)) + 20*(15552000*x^5 + 83548800*x^4 + 236669040*x^3 + 633940524*x^2 - 2034703904*x + 73906019
1)*sqrt(5*x + 3)*sqrt(-2*x + 1))/(4*x^2 - 4*x + 1)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)**4*(3+5*x)**(3/2)/(1-2*x)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 2.46075, size = 149, normalized size = 0.91 \begin{align*} \frac{1626211523}{1024000} \, \sqrt{10} \arcsin \left (\frac{1}{11} \, \sqrt{22} \sqrt{5 \, x + 3}\right ) - \frac{{\left (4 \,{\left (9 \,{\left (12 \,{\left (8 \,{\left (36 \, \sqrt{5}{\left (5 \, x + 3\right )} + 427 \, \sqrt{5}\right )}{\left (5 \, x + 3\right )} + 42657 \, \sqrt{5}\right )}{\left (5 \, x + 3\right )} + 9855815 \, \sqrt{5}\right )}{\left (5 \, x + 3\right )} - 3252423046 \, \sqrt{5}\right )}{\left (5 \, x + 3\right )} + 53664980259 \, \sqrt{5}\right )} \sqrt{5 \, x + 3} \sqrt{-10 \, x + 5}}{38400000 \,{\left (2 \, x - 1\right )}^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^4*(3+5*x)^(3/2)/(1-2*x)^(5/2),x, algorithm="giac")

[Out]

1626211523/1024000*sqrt(10)*arcsin(1/11*sqrt(22)*sqrt(5*x + 3)) - 1/38400000*(4*(9*(12*(8*(36*sqrt(5)*(5*x + 3
) + 427*sqrt(5))*(5*x + 3) + 42657*sqrt(5))*(5*x + 3) + 9855815*sqrt(5))*(5*x + 3) - 3252423046*sqrt(5))*(5*x
+ 3) + 53664980259*sqrt(5))*sqrt(5*x + 3)*sqrt(-10*x + 5)/(2*x - 1)^2